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EXECUTIVE SUMMARY 

Often, engine icing tests cannot be conducted at conditions that are considered the critical 
test points because of aircraft engine test facility operational constraints or the inability to 
find the desired conditions in natural icing flight tests. The use of ice scaling laws may 

circumvent this testing limitation. Earlier studies (Refs. I and 2) of the application of ice 
scaling (similitude) to aircraft engine testing indicated that experimental data were needed 
to determine to what extent icing test conditions [temperature (T), velocity (V), liquid water 
content (LWC), median volume diameter (MVD), pressure (P)], could vary and still achieve 
similar test results. 

In this investigation, experimental data were gathered and analyzed to determine how 
much each of the ice scaling parameters could vary without affecting similitude. 

Also studied were the effects of changing the ice scaling parameters and the icing test 
conditions on the resulting ice shapes. This effort used ice shape and associated drag coefficient 
data collected during other studies as well as new ice shape data which was collected as a 
part of this study. 

The results of this study indicate that 

1. Icing similitude criteria should be established in advance of the test in order to 
focus attention on the critical components and critical icing test conditions. 

2. Changes in the ice scaling parameters do not necessarily indicate a quantifiable 
change in the ice shape (similitude). 

3. Experimental data are useful in determining allowable changes in the icing test 
conditions (T, LWC, MVD, V, time) and may be a useful indicator of similitude 
in some icing regimes. 

. Determination of allowable tolerances for the icing test parameters depend on 
which icing regime one is operating in (e.g., rime or glaze ice). (Glaze ice accretions 
are generally less tolerant to changes in test conditions.) 

5. The scaling law used herein cannot solely be used to determine tolerances in setting 
test conditions. 

11 
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INTRODUCTION 

BACKGROUND. 

A set of ice scaring laws was analyzed and experimentally verified at the Arnold Engineering 
Development Center (AEDC) by Ruff (Ref. 1). These same scaling laws were used as the 
basis for an analytical study addressing the use of the scaling laws to facilitate aircraft engine 
icing testing (Ref. 2). The particular form of ice scaling (icing similitude) investigated in Ref. 
2 was called parameter substitution. The intent of parameter substitution was to generate 
similar ice shapes under differing meteorological and operational conditions. Similar, in this 
case, referred to reasonable geometric shape and similar surface characteristics such as type 
of ice and surface roughness. An assumption was made in both of these works that to achieve 
similitude, exact solutions to a set of ice scaling equations must be found. To do this, the 
value of each of five ice scaling parameters must be maintained constant between the original 
icing condition and the new icing condition. It should be noted that the five scaling parameters 
had been found to be sufficient to ensure icing similitude, but it was not known if all of 
them were necessary. The results of the analysis conducted and presented in Ref. 2 indicated 
that if any one of the icing test conditions [temperature (T), velocity (V), liquid water content 
(LWC), median volume diameter (MVD), etc.] was allowed to vary, all of the remaining 
conditions must also be varied to achieve an exact solution to the scaling law equations and 
thus ensure a similar ice shape (similitude). The requirement of how close these scaling 
parameters needed to be to the exact values to achieve approximate similarity could not be 
answered analytically. 

For this reason, this study was undertaken to use experimental data to answer the question 
of how much variation from the exact values of the ice scaling parameters is tolerable while 
maintaining approximate similitude and, therefore, to conduct icing tests with valid results. 

OBJECTIVE. 

The objective of this effort was to develop icing parameter substitution criteria and to 
provide additional insight and understanding of this technology. 

b 

SCOPE. 

The methodology employed to develop icing parameter substitution criteria was to evaluate 
ice shapes collected at various icing conditions. The icing conditions data corresponding to 
these known ice shapes were then input into the AEDC similitude computer code (Ref. 1), 
and ice scaling parameters were generated. A comparison of each ice shape and its associated 
scaling parameters was then conducted to determine if approximate similitude had been or 
could be achieved. 

13 
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This effort was conducted at the AEDC Engine Test Facility (ETF). Data that had 
previously been collected at the NASA Lewis Research Center (NASA LeRC) Icing Research 
Tunnel (IRT) (Ref. 3), the Canadian National Research Council High Speed Wind Tunnel, 
and the Ohio State University 6- by 22-in. Transonic Airflow Facility (Ref. 4) were also used 
in this study. Additional ice shapes were generated in the AEDC's icing research test cell 
under this and previous efforts. 

Data collected at NASA LeRC clearly demonstrated the influence of different icing 
conditions on ice shapes. Form drag data were also included in the NASA LeRC data. This 
allowed the coefficient of drag (Cd) to be used as an index of similitude throughout this 
report. Correlations were sought to relate ice shape and Cd changes to values of the ice scaling 
parameters. 

DISCUSSION 

ICING SIMILITUDE BACKGROUND WITH ASSUMPTIONS. 

In most icing similitude reports, the criteria for successful similitude are rarely discussed. 
From an engineering standpoint, one need only consider what aspects of icing are important. 
Depending on the particular set of circumstances, those characteristics of the ice formation 
that are important help determine more precisely what constitutes similitude. Several factors 
could be considered important where ice accretions are concerned. These include changes 
in the lift, drag, pitching moment, and stall characteristics of an airfoil or other surfaces 
exposed to icing. Also of interest is ice, which accumulates on a surface and may subsequently 
break away and be ingested by an engine or strike a control surface causing damage. Another 
factor is the growth of ice that blocks an engine flow passage, possibly leading to engine 
stall, surge, flameout, or other operational problems. Judgment must be exercised to determine 
the criteria for successful similitude, and one must recognize that the criteria may be different 
for different applications. 

As reported in Refs. I and 2, ice scaling is a test procedure used to form similar ice 
accretions on two geometrically similar objects under different operational, atmospheric, 
and meteorological conditions. "Similar" in this case implies not only identical shapes but 
identical surface characteristics, such as the type of ice and roughness. Icing is an accretion 
process, meaning that each layer of ice is formed on the previous layer. This implies that 
if the ice accretion process is started on a clean airfoil with surface characteristics similar 
to the full-scale airfoil, the ice accretion process will continue similarly and produce scaled 
ice accretions. This statement is the premise of icing scaling and was applied throughout the 
development of the ice scaling parameters. To apply an ice scaling procedure, a set of equations 
that accurately modeled the beginning of the icing process was defined (Ref. I). Also, 
parameters that related the atmospheric conditions of liquid water content (LWC), median 

14 
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volume droplet diameter (MVD), icing time (t), temperature (T), pressure (P), and velocity 

(V) were identified. 

The first and most obvious type of ice scaling is that in which the ice accretions are formed 

on subscale models. The ability to test subscale geometries allows smaller test facilities to 

conduct a wider range of icing tests. Since smaller test facilities are usually less expensive 

to operate than larger ones; testing costs should be reduced. Also, facilities large enough 

to conduct full-scale tests may not exist. 

A second type of icing similitude, and of particular interest for this study, is test parameter 

scaling often referred to as parameter substitution. It is aimed at increasing the simulation 

capabilities of test facilities. The ice scaling equations are used to indicate how ground test 

conditions can be modified to simulate the required icing test conditions and thereby avoid 

facility limitations. For example, a facility may be limited by the ability to deliver LWC 

= 2.0 gm/m 3, but a requirement exists to produce an ice accretion at LWC = 3.0 gm/m 3. 

The scaling equations may be applied to determine the test conditions required, at LWC -- 

2.0 gm/m 3, to simulate the ice accretion that would occur at LWC = 3.0 gm/m 3. 

Icing parameter substitution scaling may be employed to determine the adjustment that 

must be made in the icing test conditions when a limitation exists in any one of the atmospheric 

test variables. As pointed out in Ref. 2, if any icing test condition is varied, all of the remaining 

conditions must also be varied in a prescribed manner to obtain exact solutions to the five 

scaling parameters. This allows the attainment of reasonable geometric and surface similitude. 

Any deviation from the prescribed values of each icing test condition will preclude maintaining 

the exact solution of the scaling equations and could degrade similitude. How much the 

similitude is degraded, if at all, is discussed in this report. 

As mentioned, it was assumed that if the ice accretion process was started on a subscale 

clean airfoil with surface characteristics similar to the original airfoil the ice accretion process 

would continue similarly and produce similar ice accretions. Historically, this had been an 

accepted approach in icing studies. (The validity of this assumption is currently being addressed 

by the AEDC and NASA.) The analysis performed to determine the set of scaling parameters 

followed a stagnation line, clean-surface-model concept. This assumes that if the icing 

phenomena occurring along the stagnation line of the icing component are considered, then 

the entire surface exposed to icing will be correctly modeled. Provisions are not made in 

this scaling code to recalculate the scaling parameters as the ice accretion grows and changes 

the icing characteristics of the surface. 

15 
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Some other limitations of the analysis methodology used are as follows: 

1. Ice shape and surface characteristics are the only criteria for successful similitude. 

2. Neither natural nor induced ice shedding is considered (by vibration, heating, 

or externally induced aerodynamic loading). 

3. Ice-protected components are not considered in this study. 

4. The issues of ice hardness or surface roughness are not quantitatively addressed. 

5. The icing conditions referred to throughout this report address only supercooled 

cloud droplets. 

6. All icing test conditions refer to conditions as they existed at the icing component 

in question and not as they existed in the free stream. 

Additional discussions of these assumptions and limitations are given in Refs. 1 and 2. 

INFLUENCE OF SCALING PARAMETER CHANGES ON SIMII . r rUDE.  

Five scaling parameters were used to investigate how a change in one test condition could 

be compensated for through use of parameter substitution scaling to achieve successful icing 
similitude. The five scaling parameters considered were 

. 0, The Air Energy Diving Potential - -  0 is a term describing the heat-transfer potential 

of the air passing over an icing surface. It is formulated by the convective heat-transfer 

term plus the product of the rate of evaporative mass flux and the latent heat of  

vaporization, all ratioed to the convective heat-transfer coefficient. 

. ~, The Water Droplet Energy Driving Potential - -  ¢~ is a measure of the energy transfer 

potential of the liquid droplets impinging on an icing surface. It is the total enthalpy 

of the droplets ratioed to the specific heat of the droplets. 

. N, The Stagnation Line Freezing Fraction - -  N is defined as the amount of  impinging 

liquid water that freezes on impact with the collection surface. When N is zero, none 

of the impinging liciuid will freeze on impact. When N is one, all of the impinging liquid 
will freeze on impact (rime ice). 

16 
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. Ko, The Modified Inertia Parameter - -  Ko is a term describing the affinity of an 

obstruction in a flow path to collect droplets entrained in that flow path. The larger 

the value of Ko, the more affinity a body has to collect drops. 

. Ae, The Accumulation Parameter - -  Ac is a water-catch term relating the LWC, V, 

icing time, and collection efficiency terms to a rate of water catch for a particular 

collection surface. It is not an ice collection term as no accounting has been made for 

changes in the collection surface attributable to ice formation. 

One result of the work reported in Ref. 2 is that the tolerance that must be assigned to 

each of the scaling parameters to maintain similitude cannot be determined analytically. The 

objective of this effort was to obtain data to help determine those tolerances if possible. 

Three sets of ice shape data were examined, those reported in Refs. 3 and 4, and unpublished 

data collected under this and previous efforts at the AEDC. The values of  the five ice scaling 

parameters were calculated for these shapes. The data collected at NASA LeRC (Ref. 3) were 

deemed most useful for this particular study since they were collected by systematically varying 

only one icing test condition at a time over a wide range of values. This facilitates the study 

of  changes of the scaling parameters and how these changes affect icing similitude. The form 

drag was measured for the data collected at NASA, and the drag coefficient (Cd) was used 

as an index of similitude by quantitatively indicating how much the shape or ice surface changed 

as measured by this aerodynamic parameter. The question of how much Cd can be allowed 
to change and still maintain similitude cannot be generalized since this would be dictated 

by the particular application. However, this does not prevent using Cd as a similitude 

"goodness" indicator or index. To indicate the effect that a change in Cd might have, 

consider the equation for force caused by drag (Fd) for a bluff body given by Fd = CdQV 2 
A/(2gc). It can be seen that drag force is linearly proportional to and influenced by the drag 
coefficient. 

As an overview to the material that follows, the reader will see that it is difficult to speak 
of allowable tolerances in any one of the scaling parameters without considering the other 

scaling parameters. The scaling parameters must be regarded as a complete set which defines 

a similitude solution. It can be seen that the manner in which change in a scaling parameter 

affects similitude is related to the test condition change, which causes the scaling parameter 
to vary. The following discussion is intended to clarify this point. 

Figures 1 through 5 show the resulting change in C d when each of the five scaling 

parameters is varied through a range of values. The changes in the scaling parameters were 
caused by various factors. Along any particular curve in these figures, only one test condition 

is changing. All of the icing durations shown on these figures are for 8 minutes. The effect 

17 
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that changes in static pressure have on the ice accretion process is shown in Fig. 6. It can 

be seen that pressure effects over the range indicated were negligible. 

The limited amount of data shown in Figs. 1, 2, and 3 is not sufficient to define' a good 

curve fit through the data points. The curves for these figures were drawn as the author 
interpreted the data. It is felt that the spikes in Cd represent a critical icing point where, 
potentially, flow separation occurs because of the formation of glaze ice horns. The magnitude 

and exact location of these spikes are not known and would require further drag measurements 
for a more precise definition. 

In Fig. 1, the value of C d versus  the air energy driving potential, 0, is plotted. The 
expression for 0 is given by 

V 2 We 
0 = Tsur - T.~ - 2gc "~-paJL; ÷ "c'z-I+ 

It was shown in Ref. 2 that the value of 0 is almost linearly proportional to temperature. 
At the colder temperatures (higher values of 0), the ice that forms is basically rime, which 
tends only to increase the chord and leading edge surface roughness. This type of ice has 

comparatively little influence on the flow field about the surface and consequently little effect 
on Cd. As the temperature is increased, the ice becomes more glaze in nature, with its typical 
horns causing large airflow disturbances, possibly flow separation, and thus, greater changes 

in Cd. At even warmer temperatures, smaller amounts of ice tend to form at the leading edge, 
as the surface is quite wet and warmer, and ice shedding is probably occurring at a high 
rate. These small accumulations cause little flow disturbances and, thus, are associated with 

smaller values of Cd. This trend continues until the collection surface is free of ice and the 
Cd approaches that of  a wet surface. 

A similar trend exists as the velocity increases along the velocity variance line of Fig. 
1. At the lower values of  V, the ice formation is small and represents little flow disturbance. 
At higher velocities, the horned ice growth represents a big flow disturbance with flow 

separation possible, leading to larger values of Cd. The effect of velocity changes on Cd is 
quite dramatic. The ice shapes depicted in Fig. 1 are intended to allow the reader to judge 
the relationship of changes in Cd to changes in the ice shapes for these particular data. 

The extent to which Cd changes as the value of 0 is changed is heavily dependent on which 
factor caused the value of 0 to change. This is principally caused by the fact that 0 may or 
may not be a function of the particular test condition that is changing. This is most noticeable 

in the curves along which only T is varied compared to the curves along which only the V 
is varied. As the temperature varied for the MVD = 20-~m curve, a change in 0 from a value 
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of 30 to 50°F represents almost no change in the value of Cd. Along the velocity variance 

line, a change in 0 from 22 to 25°F represents a six-fold increase in the value of Cd. It can 

be noted here that the slope of the temperature variance line between 0 = 30°F and 0 

= 50°F is different depending on the value of MVD (14, 20, or 26/an).  

Figure 2 is a plot of Cd versus changes in the droplet energy driving potential, ~. The 

expression for ~ is given by 

~ff i32-Ts 
V 2 

2gc J CPw, s 

Similar discussions for Fig. 1 can be applied to Fig. 2. Phi (0) is almost a linear function 

of T, but is only slightly affected by changes in V. The denominator of the term containing 

V is large, and consequently, effects are small. 

Figure 2 shows that in some instances a smalI change in 0 may result in a large change 

in Cd, whereas under other conditions, a large change in ~ may cause a small change in Cd. 

It is apparent that this is attributable to the factor (T or V) that caused the value of  0 to 

change. As in Fig. 1, it is interesting to note the influence MVD has on the slope of  the 

temperature variance curves of Fig. 2. The change in Cd for smaller drop sizes is less sensitive 

than for the larger drop sizes. 

Relative to both Figs. 1 and 2, neither 0 (for N < 1) nor 0 is affected by changes in LWC, 

MVD, or t, although these conditions are highly influential in the formation of ice and, thus, 

affect the value of Cd. If plotted on a Cd versus 0 or ~ graph, the change in LWC, MVD, 

or t would form vertical lines parallel to the Cd axis at a value of 0 or ~b dictated by the other 

icing conditions. These vertical lines would indicate that no change in 0 or ~ occurs even 

though Cd is varying. This reinforces the observation that changes in similitude are dependent 

upon changes in the specific icing test conditions and are not necessarily dependent upon 
changes in the scaling parameters. 

Figure 3 shows the change in Cd for changes in the calculated value of clean airfoil 
stagnation line freezing fraction (N). N is defined as the percentage of impinging liquid water 

that freezes on impact with the collection surface. Similar discussions can be made for Fig. 

3 as for Figs. 1 and 2. The curves are similar in shape because of  the functional dependency 

of N on test conditions that affect the change'in ice shape and, thus, Cd. Again, it depends 

on which test conditions cause the value of N to change, thereby determining the influence 

that N has on the value of Co. 
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Figure 4 shows the effect of  changes in Cd as the clean airfoil accumulation parameter 

(Ac) is varied. The equation for Ac is given by 

LWC(V~)~ 
Ac = 0ic 

As mentioned for the previous figures and shown here as an example, it can be seen that 
if a test condition (T in this case) that is not in the calculation of the scaling parameter (Ac 
in this example) is allowed to vary, then large changes in Cd may result with no change in 

the scaling parameter. Again, the slope of the curves for velocity and LWC are dependent 
on the other icing test conditions. 

Figure 5 shows Cd versus Ko, the modified droplet inertia parameter. The equation for 
Ko (Ref. 5) is given by Ko = 0~/Xs) K, where X/Xs is the droplet range parameter, and K 
is the inertia parameter. Again, to relate a change in Ko to a change in Co depends on which 

icing conditions caused Ko to change. It was noted that, for all other test conditions held 
constant, a change in MVD from 14 to 36/an at "Is = 15°F caused the value of Cd to increase 
significantly, but at Ts = 25°F the Cd barely varied. Among other things, this shows the 

importance of correct droplet sizing in conducting ice accretion tests. The ice shapes for MVD's 
of  14, 20, 26, and 36/an are shown to aid the reader in relating Cd to icing shape changes. 

Figure 6 shows the ice shapes collected at the AEDC on a 2-in.-diam cylinder for various 
values of static pressure ranging from 8 to 14 psia. These pressure ranges correspond to 
standard altitude values of approximately 16,000 feet down to 1,000 feet. A tabulation of 

the calculated value of the ice-free cylindrical surface scaling parameter is included. Figure 
7 shows the repeatability of ice shapes in the AEDC icing research test cell. These figures 
show only slight changes to the ice shape for the pressure levels tested. These data indicate 
that pressure effects alone, in the ranges tested, do not significantly influence ice shape, 
although pressure changes have a significant influence on the value of 0. This could imply 
that 0 may not be significant as a scaling parameter in the range of pressures tested. These 
data were collected over a limited range, and the effects of pressure may be different at other 
icing conditions. This observation does not apply when pressure changes cause changes in 
local icing conditions due to pressure effects on engine operation or inlet performance. 

The purpose of looking at how changes in each ice scaling parameter affect the ice shape 
is to help determine how close each scaling parameter must be held to its prescribed value 
to achieve approximate similitude. As pointed out in Ref. 2, it is difficult to determine that 

allowable deviation. Review and analysis of experimental data and dedicated icing tunnel 
test data show that the scaling parameters vary for a variety of reasons. Specifically, they 
vary because of  changes in the icing test conditions (T, LWC, MVD, V, and P). The amount 
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each scaling parameter varies can be attributed to one or more of these icing conditions varying. 

Because of this, it does not appear that the ice scaling parameters can be used to determine 
approximate similitude in all icing regimes (rime, glaze, or mixed). 

INFLUENCE OF ICING TEST CONDITION CHANGES ON SIMILITUDE. 

The ultimate goal of determining how much each scaling parameter can deviate from 
its prescribed value is to determine the allowable tolerance to which each icing test condition 

must be held without affecting similitude. With this in mind, when icing similitude or icing 

testing is considered, it is felt that a more appropriate approach is to ask how much each 
of the test conditions may be allowed to vary without affecting the ice shape or other desired 

characteristics adversely. This is still a complicated question, since the variation that can be 

allowed in each of the icing test conditions is still dependent upon certain criteria for successful 

similitude. The criteria include, among others, the icing regime (rime, glaze, or mixed), 

geometry of the icing object, and how close is close enough! 

The following is intended to point out the influence that changes in the actual icing test 

conditions (T, V, LWC, MVD, P) have on changes in ice shape and/or  Cd. How changes 
in the test conditions affect the collection of  ice on different geometries is also presented. 

Table 1 lists the icing conditions and scaling parameters for the data presented in Figs. 
8 through 12. 

Effect of Temperature 

In Fig. 8, Cd is plotted versus static air temperature for three different values of MVD. 

Also shown are lines of constant calculated stagnation line freezing fraction. At the colder 

t empera tu res  (less than  - 10°F) and at smaller  drop sizes (MVD 
= 14 and 20/tin), a temperature variation of - 30°F (from - 20 to 10OF) results in minimal 

change in Cd. However, at warmer temperatures (greater than - 15°F), a rise of a few degrees 
(to -20°F) causes a significant increase in the Cd for the same droplet sizes. For the larger 

droplet sizes (i.e. 26/zm), the change in slope of the curve is greater, indicating that Cd is 

more sensitive to temperature changes. In this case, Cd varies not only because of 
temperature, but also because of MVD differences. The freezing fraction lines seem to indicate 
that Ca is reasonably insensitive to changes in static temperature when the freezing fraction, 

N, _ 0.7. They also indicate that a critical peak in Ca seems to occur when N _-__ 0.3. These 
observations may aid in the determination of critical design conditions for icing tests. These 

are limited data. Additional data need to be collected to further substantiate these observations 

and add resolution to the curve. 
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Effect of Velocity 

Figure 9 shows the effect of velocity differences on the ice shapes as temperature is varied. 
Note that the product (LWC x V x t) is constant. It is sometimes incorrectly assumed that 
holding this "mass collection" term constant at different icing conditions results in "equal"  
ice accumulation. The collection efficiency at different velocities is different for the same 
MVD of 20/~m. The local clean airfoil stagnation line collection efficiency is calculated to 
be 0.670 for the 190-ft/sec velocity and equal to 0.720 for the 308-ft/sec velocity points. 
The Ac = O.050/min for the 190-ft/sec velocity points, and Ac = 0.054/min for the 
308-ft/sec velocity points. Holding the (LWC × V x t) term constant does not ensure 
similitude, nor does it ensure equal amounts of ice accumulation at different icing conditions. 

The effects of pure velocity changes on the ice shapes are seen in Fig. I0. Again, the 
calculated values of the scaling parameters can be found in Table I. At the higher velocities, 
the total amount of  intercepted water should be higher because of  the increase in the water 
flux to the airfoil. The large ice horns account for the high values of  Cd. 

Effect of Droplet Size 

The effects of  changes in drop size can be seen in Fig. I IA. The ice shapes corresponding 
to the data in Fig. 11A are shown in Fig. 11B. Again, Table 1 lists the values of the scaling 
parameters. Note the significant change in ice shape that may result from small changes in 
the droplet size. 

Effect of Liquid Water Content 

Figure 12 shows the effect of LWC changes on Cd. Comparing ice shape variation caused 
by changing LWC against ice shape variations caused by changing MVD (Fig. 1113) indicates 
that MVD changes are more influential. LWC changes seem to have little influence on ice 
shape at these particular icing conditions. 

Similar LWC variations resulted in greater ice shape changes for data collected at the 
AEDC (Fig. 13). It is believed that these greater changes were caused primarily by the use 
of a different airfoil from that which was used in the NASA studies. 

Effect of Geometry 

Figure 14 shows how changes in icing test conditions (LWC in this case) affect various 
airfoil geometries (Ref. 4). It can be seen that changes in LWC have relatively little effect 
on the VR-7 airfoil, but have a relatively large effect on the NACA 0012 airfoil. The airfoil 
geometries are detailed in Fig. 15. 
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Effect of  Static Pressure 

The effect of static pressure changes on ice accretion shape is almost negligible (See Fig. 
6). However, it is emphasized that these data were taken over a fimited range and are indications 
of  changes caused solely by pressure. The data do not account for operational effects that 
would occur in engines, control surfaces, or inlet systems as the aircraft climbs to altitude. 
Care must be used in the interpretation of these data as well as all icing data. Conditions 
that exist at a particular engine component subject to icing are probably not the same as 
the free-stream icing conditions. This is particularly true for engine applications where the 
conditions that exist at a particular engine component are a function of  flight speed, engine 
operation, and atmospheric conditions (Refs. 6 and 7). 

These discussions point to the need for continuing efforts to develop and validate icing 
similitude laws. One approach might be development of a set of nondimensional scaling 
parameters such as those that might result from a classical Buckingham Pi Theorem 
dimensional analysis. Such an analysis is necessary to mitigate the requirement to study each 
icing point and each different component (geometry) in detail as it now seems necessary to 
do. The scaling laws and the scaling parameters as presented by Ruff in Ref. 1 have been 
shown through experimental verification at the AEDC to be adequate to ensure icing similitude 
over a limited range. The scaling parameters as they presently exist are difficult to use for 
finding allowable deviations in setting test conditions and for approximate similitude work. 
For rime ice accretions, where it can be assumed that the surface thermodynamics are relatively 
unimportant, the scaling parameters should, ideally, show that temperature effects are small. 
Currently, the scaling parameters do not readily point out which of the physical processes 
occurring are important and which are not. The most troublesome of the present scaling 
parameters in this area seem to be the energy driving potentials, which are not nondimensional 
terms. 

APPROXIMATE SIMILITUDE TRIAL RESULTS. 

Rime Ice Similitude Test 

An attempt was made to determine a set of icing test conditions, different from a set 
of baseline conditions, which would account for a rise in temperature and still maintain 
similitude (similar ice shape). The ice scaling code described in Ref. 1 was used with a few 
changes. Normally the code requires an input to model velocity ratio; all of the other icing 
test conditions are determined by holding all five scaling parameters to exact values. For 
this exercise, the model velocity was set equal to the baseline velocity, and the model 
temperature was set to a value for which approximate similitude was desired (i.e. 11 °F). The 
code output then specified the required values of P, LWC, MVD, and t to maintain similitude. 
The proposed value of static pressure recommended by the code was ignored, based on the 
results of Fig. 6; however, the predicted values of LWC, MVD, and t were used. A baseline 
icing tunnel test was conducted at the AEDC for a rime ice condition. (A description of the 
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AEDC icing research test cell is included as Appendix A.) The baseline temperature was -4°F.  
Another ice shape was collected with all baseline conditions, except the temperature was raised 
to 10°F. The difference can be seen in Fig. 16A. Note that the resulting ice shape is not similar 
to the original. A third ice shape was collected. The icing conditions were set to the values 
of LWC, MVD, and icing time predicted by the code to offset the temperature rise. The 
resulting ice shape was found to be quite close to the baseline shape. The scaling parameters 
for the three icing conditions are listed in Table 2. As is typical of experimental studies, the 
desired test conditions can not always be set exactly. The values shown in Table 2 are those 
actually set during the tests. Note that the baseline condition and recomputed similitude 
condition both had a calculated freezing fraction of 1, indicating that the ice was all rime 
in nature. Based upon this limited test, approximate similitude appears to be achievable in 
this rime ice case. 

Glaze Ice Similtude Test 

Another trial was conducted with the ice accretion well into the glaze region. The same 
procedure was used as mentioned previously. The predicted MVD to help overcome the 
temperature change from 23 to 28°F was 13 ~m. Upon inspection of the ice shape taken 
with 13/un, it was noticed that the impingement limit of the new ice shape was far different 
from the baseline shape and very close to the leading edge. This normally indicates that the 
droplets are too small. Another test was indicated. Since the predicted static pressure was 
not used, the droplet size did not need to change sign/ficantly to maintain a constant collection 
term (At). The ice shape was rerun using the modified test conditions and original droplet 
size in an effort to maintain similar collection characteristics. This did not improve the 
simulation. Nothing seemed to negate the effects of temperature rise. Considerable run back 
was noted for the initial 28°F test point of Fig. 16B. This latter simulation once again points 
out the difficulties associated with attempting to achieve icing similitude in the glaze ice region. 

CONCLUSIONS 

A study was conducted to investigate the possibility of achieving approximate icing 
similitude by comparing ice shapes against their corresponding icing scaling parameters. The 
results of this investigation indicate that: 

I. The criteria for estabfishing icing similitude should be specified in advance of 
the simulation. Allowable similitude tolerances should also be specified. 

. A change in a particular icing scaling parameter may or may not indicate a change 
in ice shape (simil/tude). The reason for this is the functional dependency of 
a particular scaling parameter (0, ~, N, Ac, Ko) on the icing test conditions (T, 
LWC, MVD, V, P) that caused the change in the ice shape. 
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It may be more indicative of similitude to consider changes in ice shape brought 

about by changes in the test conditions rather than changes of the icing scaling 

parameters. 

The allowable tolerance in setting icing test conditions will depend upon the 

similitude application and the particular icing conditions at which the test is to 

be conducted (e.g., rime versus glaze ice region). 

As long as the local icing conditions ensure rime ice accretions on the component 

under consideration (N is approximately > 0.7), similitude is easier to accomplish. 

For specific temperatures, the LWC term can be decreased to levels that cause 

the icing surface thermodynamics to return to the rime ice accretion regime, and 

thereby allows use of the (LWC x V x t) term to achieve approximate similitude. 

The ice scaling laws of Ref. 1 cannot be used to determine allowable tolerances 

in setting test conditions. 

The effects of pressure (altitude) on icing similitude in the range studied herein 

are negligible and can be ignored in these cases. This does not consider the effects 

of icing due to pressure changes, internal to an engine, for example, nor does 

it consider how changes in free-stream altitude pressure may change local icing 

test conditions and, hence, affect ice shape. 

Additional work is needed to develop other approaches to ice scaling. The ice 

scaling code employed in this study may be too restrictive. 
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NOTES : 
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2. Icing Time, 8 min for All Data 

3. PT = 14.7 psia for All Data 
4. Collection Surface, 21 in. Chord, 

NACA 0012 Airfoi l  

5. All Data at 4-deg Angle of Attack 
(Ref. 3) 
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FIGURE 8. EFFECT OF STATIC AIR TEMPERATURE ON ICE SHAPE DRAG WITH 

LINES OF CONSTANT CALCULATED FREEZING FRACTION. 
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FIGURE 10. EFFECT OF VELOCITY ON ICE SHAPE AND DRAG; 
AIRFOIL, NACA 0012 WITH 21-IN. CHORD AT 
4-DEG ANGLE OF ATTACK (REF. 3). 
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FIGURE 11. EFFECT OF DROPLET SIZE ON ICE SHAPE AND DRAG; AIRFOIL, 

NACA 0012 WITH 21-1N. CHORD AT 4-DEG ANGLE OF ATTACK 

(REF. 3). 
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FIGURE 12. EFFECT OF LWC ON ICE SHAPE AND DRAG; AIRFOIL, 
NACA 0012 WITH 21-IN. CHORD at 4-DEG ANGLE OF 
ATTACK (REF. 3). 
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T, p, V, LWC, MVD, 0, ¢, 
OF gm/m 3 um OF OF N K o A c psia fps 

I 15 14.2 190 0.30 25 15.0 16.3 1.00 0.133 0.024 

--~2 15 14.2 190 1.20 25 

I 

_ _ ~  10 14.2 200 0.25 19 

m ~ 2  10 14.2 200 0.60 Ig 

- - ~ 3  10 14.2 200 1.00 19 

• I 

~ ~ 4  10 14.2 200 1.70 19 

22.8 16.3 0.46 0.133 0.096 

11.7 21.2 1.00 0.088 0.020 

27.3 21.2 1.00 0.088 0.047 

29.1 21.2 0.67 0.088 0.079 

29.1 21.2 0.47 0.088 0.134 

A. PART 1 
Figure 13. EFFECI~ OF LWC VARIATIONS ON LAMINAR FLOW AIRFOIL, 12-1N. 

CHORD, 0-DEG ANGLE OF ATTACK, 8-MIN CLOUD DURATION 
(SHOWN 90-PERCENT FULL-SCALE). 
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T, p, V, LWC, MVD, 
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B. PART 2 
FIGURE 13. CONCLUDF_,D. 

0 1  ~ 9  

OF OF N K o A c 

23.5 35.3 1.00 0.066 0.045 

37.7 35.3 i 1.00 0.066 0.074 

46.1 35.3 0.68 0.066 0.163 

21.6 21.2 1.00 0.066 0.037 

29.1 21.2 0.74 0.066 0.074 

29.1 21.2 0.44 0.066 0.149 
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FIGURE 14. EFFECT OF LWC VARIATIONS ON DIFFERENT AIRFOILS AT THE 
SAME ICING TEST CONDITIONS (REF. 4). 
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First Generation Second Generation 

~ ~S61095 

Second Generation, llig;l Lift 

vR-7 

Second Generation, High L i f t  Third Generation 

L~C-A09 

Airfoi l  

NACA 0012 

SCI095 

SC1012 R8 

SSC-A09 

VR-7 

Chord 
tic cm (in.) 

0.120 15.24 {6.00) 

0.095 15.24 (6.00) 

0.120 15.39 (6.00) 

0.090 15.24 (6.00) 

0.120 16.21 {6.38) 

Pl anform 
Area 

cm 2 {In. 2) 

464.5 (72.00) 
464.5 (72.00) 

473.9 (73.45) 

464.5 (72.00) 
493.9 (76.56) 

FIGURE lS. AIRFOIL GEOMETRY DETAILS (REF. 4). 
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TABLE 1. TABULATION OF ICING CONDITIONS AND SCALING PARAMETERS 
FOR REF. 3 DATA USED IN THIS REPORT 

v. I fps Tt'°F Ts'°F 

190 - 1 5  - 1 8  
190 - 4  - 7  
190 0 - 3 
190 0 - 3 
190 5 2 
190 10 7 
190 18 15 
190 18 15 
190 23 20 
190 28 25 
190 30 27 

308 - 1 5  -23  
308 1 6 
308 10 3 
308 18 10 
308 28 21 

136 18 16 
190 18 15 
308 18 10 

190 - 1 5  - 1 8  
190 - 1 5  - 1 8  
190 - 15 - 18 
190 18 15 
190 18 15 
190 18 15 
190 18 15 
190 28 25 
190 28 25 
19o 28 25 

190 0 - 3 

190 0 - 3 
190 0 - 3 
190 18 15 
190 18 15 
190 18 15 

t, Spray Conditions e, ¢, 
min LWC, Igm/m 3 Cd ~ Ko N o F o F 

Temperature Variations 
8 1.3 20 0.019 0.669 0.053 1.00 51 49 
8 1.3 20 0.018 0.670 0.053 0.92 50 38 
8 1.3 20 0.022 0.670 0.053 0.84 46 35 
8 1.3 20 0.021 0.670 0.053 0.84 46 35 
8 1.3 20 0.021 0.670 0.053 0.71 39 29 
8 1.3 20 0.021 0.670 0.053 0.59 33 24 
8 ! .3 20 0.029 0.670 0.053 0.41 23 17 
8 1.3 20 0.021 0.670 0.053 0.41 23 17 
8 1.3 20 0.060 0.670 0.053 0.28 16 ! 1 

8 1.3 20 0.028 0.670 0.053 0.14 8 6 
8 1.3 20 0.026 0.670 0.053 0.09 5 4 

6.2 1.05 20 0.024 0.718 0.071 !.00 53 53 
6.2 1.05 20 0.028 0.720 0.072 0.78 44 37 
6.2 i.05 20 0.037 0.720 0.072 0.58 34 28 
6.2 !.05 20 0.061 0.720 0.072 0.43 25 20 
6.2 1.05 20 0.076 0.720 0.072 0.18 ! 0 I 0 

Velocity Variations 

8 1.3 20 
8 1.3 20 
8 1.3 20 

Drop Size Variations 

8 1.3 14 
8 1.3 20 
8 1.3 26 
8 i.3 14 
8 i.3 20 
8 !.3 26 
8 1.3 36 
8 ! .3 14 
8 1.3 20 
8 1.3 26 

LWC Variations 

8 1.0 20 
8 1.3 20 
8 2.0 20 
8 1.0 20 
8 1.3 20 

8 1.6 20 

0.016 0.628 0.042 0.48 23 16 
0.030 0.670 0.053 0.41 23 17 
0.118 0.720 0.072 0.37 25 20 

0.012 0.566 0.029 1.00 44 49 
0.019 0.669 0.053 !.00 51 49 
0.020 0.738 0.080 1.00 55 49 
0.015 0.566 0.050 0.47 23 17 
0.039 0.670 0.053 0.41 23 17 
0.075 0.740 0.081 0.38 23 17 
0.105 0.807 0.136 0.36 23 17 
0.031 0.566 0.029 0.15 8 6 
0.029 0.670 0.053 0.14 8 6 
0.024 0.740 0.081 0.13 8 6 

0.021 0.670 0.053 ! .00 45 35 

0.025 0.670 0.053 0.84 45 35 
0.031 0.670 0.053 0.63 45 35 
0.026 0.670 0.053 0.50 23 17 
0.031 0.670 0.053 0.41 23 17 
0.046 0.670 0.053 0.36 23 17 

N O T E :  All Conditions at Pt -- 14.7 psia 
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TABLE 2. SCALING PARAMETERS FOR APPROXIMATE SIMILITUDE TRIALS 

Case 

A 
B 
C 
D 
E 
F 
G 

P, T, 
psia °F 

14.2 - 4  
14.2 10 
14.2 !1 
14.2 23 
14.2 28 
14.2 29 
14.2 28 

Test Conditions 

LWC, MVD, 
gm/m 3 ~tm 

1.0 16 
i .0  16 
0.35 I I 
2.0 30 
1.9 34 
0.8 13 
0.8 32 

tp 
V, fps min 

200 8 
200 8 
200 21 
200 8 
200 8 
200 20 
200 20 

Scaling Parameters* 

o F o F N, K o A c 

37.7 35.3 1.00 0.066 0.074 
29. ! 21.1 0.74 0.066 0.074 
13.2 20.2 i.00 0.036 0.022 
10.9 8.2 0.15 0.184 0.178 
3.1 3.2 0.048 0.224 0.172 
1.4 2.2 0.054 0.047 0.055 
3.1 3.2 0.085 0.204 0.072 

* Calculated Using NACA 0012, 12-in. Chord, but 0.38-in. Leading Edge Diameter 
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APPENDIX A 

FACILITY DESCRIPTION 

Experimental icing studies are conducted in the Icing Research Test Cell (R-ID) at the 

AEDC (Fig. A-l).  This test cell consists of a flow-metering venturi, plenum chamber, water 

spray system, bellmouth, removable connecting ducts, and a test chamber. Water droplets 

are sprayed into the primary airstream through a single, two-phase atomizi.ng spray nozzle 

located in the plenum chamber, upstream of the bellmouth. The bellmouth terminates in 

a 12-in.-diam duct that directs the conditioned air to the test article in a 3-ft-diam test section. 

A secondary air system supplies air to the test section. This secondary air encapsulates the 

primary flow to prevent the recirculation of water droplets around the test article. The air 

is exhausted to the atmosphere either directly or through the Engine Test Facility (ETF) exhaust 
plant. 

Icing studies require that both the droplet size and LWC in the test section be accurately 

known and controlled. The methods used for specifying these parameters are described below. 

Droplet Size Calibration 

A two-phase atomizing spray nozzle is used to produce a cloud of water droplets in the 

test cell. A cloud with the desired mass median droplet size and spray water flow rate is obtained 

by setting the air and water pressures supplied to the spray nozzle. Each nozzle must, therefore, 

be calibrated prior to use in an icing test so that the droplet size corresponding to a given 

set of air and water pressures is known. The droplet size distribution in the cloud is measured 

using a fiber-optics particle-sizing system (FOS) developed at the AEDC. The FOS is an imaging 

device that uses a laser beam as a light source and an optical system to define a probe volume 

in the droplet flow field (Fig. A-2). The probe volume is focused onto a linear array of sensor 

modules. As a droplet passes through the probe volume, its shadow occludes a number of 

the sensors. The number of sensors occluded is proportional to the droplet diameter. A 

thorough discussion of the operational theory of the FOS is given in Ref. A-I.  

The FOS has been compared with other particle diagnostic systems including a holographic 

imaging system (Ref. A-2). Figure A-3 shows a comparison of the mass median diameters 

of droplet size distributions obtained from the FOS and the spray nozzle calibration curve 

obtained from holographic data. Based on this and similar comparisons, the FOS is considered 

to provide accurate calibrations of droplet distributions produced by water spray nozzles. 
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Determination of  LWC 

As with the droplet size measurement, the LWC is not measured on-line but is set by 

introducing the proper water flow into the airstream through the spray nozzle. Since the air 

received from the ETF air supply plant is essentially dry, considerable evaporation of  the 

water can occur, thereby reducing the LWC. A computer code developed at the AEDC to 

calculate the amount of  evaporation from droplets in a spray (Ref. A-3) was used to determine 

the additional amount  of  water that must be added to produce the required LWC in the test 

section. A comparison of  methods used to determine the LWC in a test cell was done by 

Stallabrass (Ref. A-4) and showed that the AEDC method provided the best comparison 

to measured values of  LWC. Calibration of  the icing research test cell has been achieved 

by comparing the LWC predicted by the AEDC method with the LWC calculated from 

holographic droplet-size measurements. These results, illustrated in Fig. A-4, show that the 

input LWC agrees well with measured values. 

Test Procedures 

The spray nozzle pressures required to produce the desired water flow rate (LWC) and 

mass median droplet diameter were determined from the appropriate nozzle calibration curves. 

After a pretest calibration of  all instrumentation was performed, the test cell pressure 

was set to the desired pressure altitude, and primary and secondary inlet air was admitted 

to the test cell at the required pressure and temperature. Once the test cell flow conditions 

had stabilized to steady state, the desired water and air flows through the spray nozzle were 

set. Approximately 20 seconds were required to stabilize the clSud on a desired condition. 

After exposing the test article to the icing cloud for the desired length of  time, the spray 

nozzle and primary airflow were stopped and the test cell was brought to atmospheric pressure. 

The connecting duct section immediately in front of  the test section (Fig. A-I) was removed 

and the measurements o f  the ice accretions were obtained. Approximately 5 minutes were 

required for this shutdown and measurement procedure. Since the test cell remained cold, 

no significant melting of  the ice accretion was observed. This procedure was repeated for 

each test condition. 
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FIGURE A-4. COMPARISON OF INPUT AND MEASURED LWC 
IN THE RESEARCH TEST CELL (REF. A-2). 
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